MakeItFrom.com
Menu (ESC)

Annealed Grade 23 Titanium vs. Annealed N08800 Stainless Steel

Annealed grade 23 titanium belongs to the titanium alloys classification, while annealed N08800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is annealed grade 23 titanium and the bottom bar is annealed N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
34
Fatigue Strength, MPa 500
180
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 570
400
Tensile Strength: Ultimate (UTS), MPa 940
600
Tensile Strength: Yield (Proof), MPa 850
230

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1390
Melting Onset (Solidus), °C 1560
1360
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
12
Thermal Expansion, µm/m-K 9.4
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
5.3
Embodied Energy, MJ/kg 610
76
Embodied Water, L/kg 200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
160
Resilience: Unit (Modulus of Resilience), kJ/m3 3430
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 59
21
Strength to Weight: Bending, points 48
20
Thermal Diffusivity, mm2/s 2.9
3.0
Thermal Shock Resistance, points 68
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0.15 to 0.6
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
39.5 to 50.7
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
30 to 35
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 88.1 to 91
0.15 to 0.6
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0