MakeItFrom.com
Menu (ESC)

M20 C51100 Bronze vs. M20 C65500 Bronze

Both M20 C51100 bronze and M20 C65500 bronze are copper alloys. Both are furnished in the M20 (as hot rolled) condition. They have a moderately high 95% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is M20 C51100 bronze and the bottom bar is M20 C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 350
440

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 1060
1030
Melting Onset (Solidus), °C 970
970
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 84
36
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 20
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
29
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 48
42
Embodied Water, L/kg 340
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 58
62 to 790
Stiffness to Weight: Axial, points 7.1
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
14
Strength to Weight: Bending, points 12
15
Thermal Diffusivity, mm2/s 25
10
Thermal Shock Resistance, points 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 93.8 to 96.5
91.5 to 96.7
Iron (Fe), % 0 to 0.1
0 to 0.8
Lead (Pb), % 0 to 0.050
0 to 0.050
Manganese (Mn), % 0
0.5 to 1.3
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
2.8 to 3.8
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0 to 1.5
Residuals, % 0 to 0.5
0 to 0.5