MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. EN 1.8868 Steel

C355.0 aluminum belongs to the aluminum alloys classification, while EN 1.8868 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is EN 1.8868 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 90
160
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.7 to 3.8
25
Fatigue Strength, MPa 76 to 84
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 290 to 310
540
Tensile Strength: Yield (Proof), MPa 200 to 230
350

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
48
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1120
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
330
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 32
19
Strength to Weight: Bending, points 36 to 37
19
Thermal Diffusivity, mm2/s 60
13
Thermal Shock Resistance, points 13 to 14
16

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 1.0 to 1.5
0 to 0.3
Iron (Fe), % 0 to 0.2
96.4 to 100
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 5.5
0 to 0.4
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0 to 0.2
0 to 0.030
Vanadium (V), % 0
0 to 0.060
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0 to 0.15
0