MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. AISI 415 Stainless Steel

C443.0 aluminum belongs to the aluminum alloys classification, while AISI 415 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
260
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 9.0
17
Fatigue Strength, MPa 120
430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 130
550
Tensile Strength: Ultimate (UTS), MPa 230
900
Tensile Strength: Yield (Proof), MPa 100
700

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
24
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.9
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1120
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
140
Resilience: Unit (Modulus of Resilience), kJ/m3 70
1250
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 31
26
Thermal Diffusivity, mm2/s 58
6.4
Thermal Shock Resistance, points 10
33

Alloy Composition

Aluminum (Al), % 89.6 to 95.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
77.8 to 84
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 6.0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0