MakeItFrom.com
Menu (ESC)

Cold Finished AISI 304L vs. Cold Finished AISI 321

Both cold finished AISI 304L and cold finished AISI 321 are iron alloys. Both are furnished in the cold worked (strain hardened) condition. They have a very high 99% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is cold finished AISI 304L and the bottom bar is cold finished AISI 321.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
34
Fatigue Strength, MPa 300
270
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 480
460
Tensile Strength: Ultimate (UTS), MPa 710
690
Tensile Strength: Yield (Proof), MPa 350
350

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
480
Maximum Temperature: Mechanical, °C 540
870
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
3.2
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 20
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
190
Resilience: Unit (Modulus of Resilience), kJ/m3 320
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.2
4.1
Thermal Shock Resistance, points 15
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 18 to 20
17 to 19
Iron (Fe), % 65 to 74
65.3 to 74
Manganese (Mn), % 0 to 2.0
0 to 2.0
Nickel (Ni), % 8.0 to 12
9.0 to 12
Nitrogen (N), % 0 to 0.1
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.7