MakeItFrom.com
Menu (ESC)

Ductile Cast Iron vs. 5056 Aluminum

Ductile cast iron belongs to the iron alloys classification, while 5056 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ductile cast iron and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 170 to 180
67
Elongation at Break, % 2.1 to 20
4.9 to 31
Poisson's Ratio 0.28 to 0.31
0.33
Shear Modulus, GPa 64 to 70
25
Shear Strength, MPa 420 to 800
170 to 240
Tensile Strength: Ultimate (UTS), MPa 460 to 920
290 to 460
Tensile Strength: Yield (Proof), MPa 310 to 670
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 290
190
Melting Completion (Liquidus), °C 1160
640
Melting Onset (Solidus), °C 1120
570
Specific Heat Capacity, J/kg-K 490
910
Thermal Conductivity, W/m-K 31 to 36
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
29
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8 to 9.4
99

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
9.5
Density, g/cm3 7.1 to 7.5
2.7
Embodied Carbon, kg CO2/kg material 1.5
9.0
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 43
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 80
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 1330
170 to 1220
Stiffness to Weight: Axial, points 12 to 14
14
Stiffness to Weight: Bending, points 24 to 26
51
Strength to Weight: Axial, points 17 to 35
30 to 48
Strength to Weight: Bending, points 18 to 29
36 to 50
Thermal Diffusivity, mm2/s 8.9 to 10
53
Thermal Shock Resistance, points 17 to 35
13 to 20

Alloy Composition

Aluminum (Al), % 0
93 to 95.4
Carbon (C), % 3.0 to 3.5
0
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 93.7 to 95.5
0 to 0.4
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.080
0
Silicon (Si), % 1.5 to 2.8
0 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants