MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. EN 1.4477 Stainless Steel

Both EN 1.0038 steel and EN 1.4477 stainless steel are iron alloys. They have 62% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 120
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23 to 25
22 to 23
Fatigue Strength, MPa 140 to 160
420 to 490
Impact Strength: V-Notched Charpy, J 28 to 31
110
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Shear Strength, MPa 240 to 270
550 to 580
Tensile Strength: Ultimate (UTS), MPa 380 to 430
880 to 930
Tensile Strength: Yield (Proof), MPa 200 to 220
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
13
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
20
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
3.7
Embodied Energy, MJ/kg 19
52
Embodied Water, L/kg 48
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
940 to 1290
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 13 to 15
31 to 33
Strength to Weight: Bending, points 15 to 16
26 to 27
Thermal Diffusivity, mm2/s 13
3.5
Thermal Shock Resistance, points 12 to 13
23 to 25

Alloy Composition

Carbon (C), % 0 to 0.23
0 to 0.030
Chromium (Cr), % 0 to 0.3
28 to 30
Copper (Cu), % 0 to 0.6
0 to 0.8
Iron (Fe), % 97.1 to 100
56.6 to 63.6
Manganese (Mn), % 0 to 1.5
0.8 to 1.5
Molybdenum (Mo), % 0 to 0.080
1.5 to 2.6
Nickel (Ni), % 0 to 0.3
5.8 to 7.5
Nitrogen (N), % 0 to 0.014
0.3 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.55
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.015

Comparable Variants