MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. C70700 Copper-nickel

EN 1.0038 steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 120
73
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23 to 25
39
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
46
Shear Strength, MPa 240 to 270
220
Tensile Strength: Ultimate (UTS), MPa 380 to 430
320
Tensile Strength: Yield (Proof), MPa 200 to 220
110

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 49
59
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
52
Embodied Water, L/kg 48
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
100
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
51
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 13 to 15
10
Strength to Weight: Bending, points 15 to 16
12
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 12 to 13
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.23
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.6
88.5 to 90.5
Iron (Fe), % 97.1 to 100
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
9.5 to 10.5
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.55
0
Sulfur (S), % 0 to 0.045
0
Residuals, % 0
0 to 0.5