MakeItFrom.com
Menu (ESC)

EN 1.0259 Steel vs. AISI 430FSe Stainless Steel

Both EN 1.0259 steel and AISI 430FSe stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0259 steel and the bottom bar is AISI 430FSe stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 310
340
Tensile Strength: Ultimate (UTS), MPa 490
540
Tensile Strength: Yield (Proof), MPa 280
310

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
870
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
25
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
8.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.5
2.1
Embodied Energy, MJ/kg 19
30
Embodied Water, L/kg 49
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 13
6.8
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.2
0 to 0.12
Chromium (Cr), % 0 to 0.3
16 to 18
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.7 to 99.98
79.5 to 84
Manganese (Mn), % 0 to 1.4
0 to 1.3
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.060
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.060
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0