MakeItFrom.com
Menu (ESC)

EN 1.0259 Steel vs. EN 1.7016 Steel

Both EN 1.0259 steel and EN 1.7016 steel are iron alloys. Their average alloy composition is basically identical. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.0259 steel and the bottom bar is EN 1.7016 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
130 to 170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 490
450 to 1390

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
45
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 19
19
Embodied Water, L/kg 49
50

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
16 to 49
Strength to Weight: Bending, points 18
17 to 35
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 15
13 to 41

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.2
0.14 to 0.2
Chromium (Cr), % 0 to 0.3
0.7 to 1.0
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 96.7 to 99.98
97.3 to 98.6
Manganese (Mn), % 0 to 1.4
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.025
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0