MakeItFrom.com
Menu (ESC)

EN 1.1132 Steel vs. EN 1.8903 Steel

Both EN 1.1132 steel and EN 1.8903 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1132 steel and the bottom bar is EN 1.8903 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 24
19
Fatigue Strength, MPa 180 to 280
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 260 to 310
390
Tensile Strength: Ultimate (UTS), MPa 370 to 490
630
Tensile Strength: Yield (Proof), MPa 240 to 400
480

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
46
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 18
24
Embodied Water, L/kg 46
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 430
620
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13 to 17
22
Strength to Weight: Bending, points 15 to 18
21
Thermal Diffusivity, mm2/s 14
12
Thermal Shock Resistance, points 12 to 16
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0.13 to 0.17
0 to 0.22
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0 to 0.25
0 to 0.6
Iron (Fe), % 98.6 to 99.57
95 to 99.05
Manganese (Mn), % 0.3 to 0.6
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.65
Sulfur (S), % 0 to 0.025
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22