MakeItFrom.com
Menu (ESC)

EN 1.1191 Steel vs. C37700 Brass

EN 1.1191 steel belongs to the iron alloys classification, while C37700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1191 steel and the bottom bar is C37700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 16 to 17
40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
39
Shear Strength, MPa 380 to 430
270
Tensile Strength: Ultimate (UTS), MPa 630 to 700
400
Tensile Strength: Yield (Proof), MPa 310 to 440
160

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 48
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
30

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
45
Embodied Water, L/kg 47
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
130
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 510
120
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 25
14
Strength to Weight: Bending, points 21 to 22
15
Thermal Diffusivity, mm2/s 13
39
Thermal Shock Resistance, points 20 to 22
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.42 to 0.5
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
58 to 61
Iron (Fe), % 97.3 to 99.08
0 to 0.3
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
35.7 to 40.5
Residuals, % 0
0 to 0.5