MakeItFrom.com
Menu (ESC)

EN 1.1191 Steel vs. C62300 Bronze

EN 1.1191 steel belongs to the iron alloys classification, while C62300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1191 steel and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 17
18 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Shear Strength, MPa 380 to 430
360 to 390
Tensile Strength: Ultimate (UTS), MPa 630 to 700
570 to 630
Tensile Strength: Yield (Proof), MPa 310 to 440
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 48
54
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
13

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 19
52
Embodied Water, L/kg 47
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 510
240 to 430
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 25
19 to 21
Strength to Weight: Bending, points 21 to 22
18 to 20
Thermal Diffusivity, mm2/s 13
15
Thermal Shock Resistance, points 20 to 22
20 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.5 to 10
Carbon (C), % 0.42 to 0.5
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
83.2 to 89.5
Iron (Fe), % 97.3 to 99.08
2.0 to 4.0
Manganese (Mn), % 0.5 to 0.8
0 to 0.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0 to 1.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0 to 0.25
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.6
Residuals, % 0
0 to 0.5