MakeItFrom.com
Menu (ESC)

EN 1.1191 Steel vs. C99500 Copper

EN 1.1191 steel belongs to the iron alloys classification, while C99500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.1191 steel and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 16 to 17
13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
45
Tensile Strength: Ultimate (UTS), MPa 630 to 700
540
Tensile Strength: Yield (Proof), MPa 310 to 440
310

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
400
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 47
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
63
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 510
410
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 25
17
Strength to Weight: Bending, points 21 to 22
17
Thermal Shock Resistance, points 20 to 22
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0.42 to 0.5
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
82.5 to 92
Iron (Fe), % 97.3 to 99.08
3.0 to 5.0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0.5 to 0.8
0 to 0.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
3.5 to 5.5
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0.5 to 2.0
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
0.5 to 2.0
Residuals, % 0
0 to 0.3