MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. C94800 Bronze

EN 1.1221 steel belongs to the iron alloys classification, while C94800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 21
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Tensile Strength: Ultimate (UTS), MPa 730 to 870
310
Tensile Strength: Yield (Proof), MPa 390 to 550
160

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 48
39
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
34
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.5
3.5
Embodied Energy, MJ/kg 19
56
Embodied Water, L/kg 47
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
58
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
110
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26 to 31
9.8
Strength to Weight: Bending, points 23 to 26
12
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 23 to 28
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0.57 to 0.65
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
84 to 89
Iron (Fe), % 97.1 to 98.8
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Manganese (Mn), % 0.6 to 0.9
0 to 0.2
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
4.5 to 6.0
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.035
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3