MakeItFrom.com
Menu (ESC)

EN 1.3956 Stainless Steel vs. Grade 29 Titanium

EN 1.3956 stainless steel belongs to the iron alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3956 stainless steel and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 27
6.8 to 11
Fatigue Strength, MPa 240
460 to 510
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 650
930 to 940
Tensile Strength: Yield (Proof), MPa 330
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1080
340
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Expansion, µm/m-K 13
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 4.8
39
Embodied Energy, MJ/kg 68
640
Embodied Water, L/kg 180
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 270
3420 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23
58 to 59
Strength to Weight: Bending, points 21
47 to 48
Thermal Shock Resistance, points 18
68 to 69

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 20.5 to 23.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 51.9 to 62.1
0 to 0.25
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0.1 to 0.3
3.5 to 4.5
Residuals, % 0
0 to 0.4