MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. 5383 Aluminum

EN 1.3963 alloy belongs to the iron alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 29
6.7 to 15
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 290
190 to 220
Tensile Strength: Ultimate (UTS), MPa 440
310 to 370
Tensile Strength: Yield (Proof), MPa 310
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1390
540
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 1.6
24

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 4.8
9.0
Embodied Energy, MJ/kg 66
160
Embodied Water, L/kg 110
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 260
170 to 690
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 15
32 to 38
Strength to Weight: Bending, points 16
38 to 42
Thermal Shock Resistance, points 110
14 to 16

Alloy Composition

Aluminum (Al), % 0
92 to 95.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0 to 0.25
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 60.5 to 64.9
0 to 0.25
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0 to 0.5
0.7 to 1.0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0.1 to 0.2
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15