MakeItFrom.com
Menu (ESC)

EN 1.4006 Stainless Steel vs. Grade 14 Titanium

EN 1.4006 stainless steel belongs to the iron alloys classification, while grade 14 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is grade 14 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 23
23
Fatigue Strength, MPa 150 to 300
220
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 370 to 460
290
Tensile Strength: Ultimate (UTS), MPa 590 to 750
460
Tensile Strength: Yield (Proof), MPa 230 to 510
310

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 740
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 30
21
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 1.9
32
Embodied Energy, MJ/kg 27
520
Embodied Water, L/kg 100
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 110
93
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 660
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 27
28
Strength to Weight: Bending, points 20 to 24
29
Thermal Diffusivity, mm2/s 8.1
8.5
Thermal Shock Resistance, points 21 to 26
35

Alloy Composition

Carbon (C), % 0.080 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 83.1 to 88.4
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.4 to 99.56
Residuals, % 0
0 to 0.4