MakeItFrom.com
Menu (ESC)

EN 1.4021 Stainless Steel vs. CC490K Brass

EN 1.4021 stainless steel belongs to the iron alloys classification, while CC490K brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4021 stainless steel and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 17
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 630 to 880
230
Tensile Strength: Yield (Proof), MPa 390 to 670
110

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 760
160
Melting Completion (Liquidus), °C 1440
980
Melting Onset (Solidus), °C 1400
910
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 30
72
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
16
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
16

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 1.9
2.9
Embodied Energy, MJ/kg 27
47
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
28
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1160
54
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23 to 31
7.3
Strength to Weight: Bending, points 21 to 26
9.5
Thermal Diffusivity, mm2/s 8.1
22
Thermal Shock Resistance, points 22 to 31
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0.16 to 0.25
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
81 to 86
Iron (Fe), % 83.2 to 87.8
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Zinc (Zn), % 0
7.0 to 9.5