MakeItFrom.com
Menu (ESC)

EN 1.4028 Stainless Steel vs. Grade 21 Titanium

EN 1.4028 stainless steel belongs to the iron alloys classification, while grade 21 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4028 stainless steel and the bottom bar is grade 21 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 11 to 17
9.0 to 17
Fatigue Strength, MPa 230 to 400
550 to 660
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
51
Shear Strength, MPa 410 to 550
550 to 790
Tensile Strength: Ultimate (UTS), MPa 660 to 930
890 to 1340
Tensile Strength: Yield (Proof), MPa 390 to 730
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 760
310
Melting Completion (Liquidus), °C 1440
1740
Melting Onset (Solidus), °C 1400
1690
Specific Heat Capacity, J/kg-K 480
500
Thermal Conductivity, W/m-K 30
7.5
Thermal Expansion, µm/m-K 11
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
60
Density, g/cm3 7.7
5.4
Embodied Carbon, kg CO2/kg material 1.9
32
Embodied Energy, MJ/kg 27
490
Embodied Water, L/kg 100
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 96
110 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1360
2760 to 5010
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 24 to 33
46 to 69
Strength to Weight: Bending, points 22 to 27
38 to 50
Thermal Diffusivity, mm2/s 8.1
2.8
Thermal Shock Resistance, points 23 to 32
66 to 100

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.26 to 0.35
0 to 0.050
Chromium (Cr), % 12 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 83.1 to 87.7
0 to 0.4
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0
14 to 16
Niobium (Nb), % 0
2.2 to 3.2
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.17
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.15 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
76 to 81.2
Residuals, % 0
0 to 0.4

Comparable Variants