MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. 2095 Aluminum

EN 1.4062 stainless steel belongs to the iron alloys classification, while 2095 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 23 to 34
8.5
Fatigue Strength, MPa 410 to 420
200
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 510
410
Tensile Strength: Ultimate (UTS), MPa 770 to 800
700
Tensile Strength: Yield (Proof), MPa 530 to 600
610

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 1030
210
Melting Completion (Liquidus), °C 1430
660
Melting Onset (Solidus), °C 1380
540
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.6
Embodied Energy, MJ/kg 37
160
Embodied Water, L/kg 150
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
57
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
2640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 28 to 29
65
Strength to Weight: Bending, points 24 to 25
59
Thermal Diffusivity, mm2/s 4.0
49
Thermal Shock Resistance, points 21 to 22
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.3 to 94.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21.5 to 24
0
Copper (Cu), % 0
3.9 to 4.6
Iron (Fe), % 69.3 to 77.3
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0 to 2.0
0 to 0.25
Molybdenum (Mo), % 0 to 0.45
0
Nickel (Ni), % 1.0 to 2.9
0
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15