MakeItFrom.com
Menu (ESC)

EN 1.4104 Stainless Steel vs. Grade 12 Titanium

EN 1.4104 stainless steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4104 stainless steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 23
21
Fatigue Strength, MPa 230 to 310
280
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 400 to 450
330
Tensile Strength: Ultimate (UTS), MPa 630 to 750
530
Tensile Strength: Yield (Proof), MPa 350 to 560
410

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 860
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1390
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.2
31
Embodied Energy, MJ/kg 30
500
Embodied Water, L/kg 120
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 800
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23 to 27
32
Strength to Weight: Bending, points 21 to 24
32
Thermal Diffusivity, mm2/s 6.7
8.5
Thermal Shock Resistance, points 22 to 27
37

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.1 to 0.17
0 to 0.080
Chromium (Cr), % 15.5 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 78.8 to 84.1
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.2 to 0.6
0.2 to 0.4
Nickel (Ni), % 0
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4