MakeItFrom.com
Menu (ESC)

EN 1.4123 Stainless Steel vs. 4032 Aluminum

EN 1.4123 stainless steel belongs to the iron alloys classification, while 4032 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4123 stainless steel and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 250
120
Elastic (Young's, Tensile) Modulus, GPa 200
73
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 720 to 810
390

Thermal Properties

Latent Heat of Fusion, J/g 280
570
Maximum Temperature: Mechanical, °C 840
180
Melting Completion (Liquidus), °C 1450
570
Melting Onset (Solidus), °C 1410
530
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 23
140
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 4.2
7.8
Embodied Energy, MJ/kg 62
140
Embodied Water, L/kg 120
1030

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 26 to 29
41
Strength to Weight: Bending, points 23 to 25
45
Thermal Diffusivity, mm2/s 6.3
59
Thermal Shock Resistance, points 26 to 29
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
81.1 to 87.2
Carbon (C), % 0.35 to 0.5
0
Chromium (Cr), % 14 to 16.5
0 to 0.1
Copper (Cu), % 0
0.5 to 1.3
Iron (Fe), % 76.7 to 84.6
0 to 1.0
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.0 to 2.5
0
Nickel (Ni), % 0 to 0.5
0.5 to 1.3
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
11 to 13.5
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15