MakeItFrom.com
Menu (ESC)

EN 1.4317 Stainless Steel vs. AWS E320

Both EN 1.4317 stainless steel and AWS E320 are iron alloys. They have 56% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is EN 1.4317 stainless steel and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Tensile Strength: Ultimate (UTS), MPa 860
620

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
460
Thermal Expansion, µm/m-K 11
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
38
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.4
6.5
Embodied Energy, MJ/kg 33
91
Embodied Water, L/kg 110
220

Common Calculations

PREN (Pitting Resistance) 14
28
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 26
20
Thermal Shock Resistance, points 30
16

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.070
Chromium (Cr), % 12 to 13.5
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 78.7 to 84.5
31.8 to 43.5
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 0 to 0.7
2.0 to 3.0
Nickel (Ni), % 3.5 to 5.0
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.030