MakeItFrom.com
Menu (ESC)

EN 1.4405 Stainless Steel vs. EN 1.0478 Steel

Both EN 1.4405 stainless steel and EN 1.0478 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4405 stainless steel and the bottom bar is EN 1.0478 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
24
Fatigue Strength, MPa 370
170
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 860
440
Tensile Strength: Yield (Proof), MPa 610
230

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
49
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 39
20
Embodied Water, L/kg 130
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
90
Resilience: Unit (Modulus of Resilience), kJ/m3 950
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31
16
Strength to Weight: Bending, points 26
16
Thermal Diffusivity, mm2/s 4.6
13
Thermal Shock Resistance, points 29
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0 to 0.060
0 to 0.18
Chromium (Cr), % 15 to 17
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 73.6 to 80.3
96.9 to 99.4
Manganese (Mn), % 0 to 1.0
0.6 to 1.4
Molybdenum (Mo), % 0.7 to 1.5
0 to 0.080
Nickel (Ni), % 4.0 to 6.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.030
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.025
0 to 0.015
Vanadium (V), % 0
0 to 0.050