MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. 4047 Aluminum

EN 1.4421 stainless steel belongs to the iron alloys classification, while 4047 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is 4047 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 11 to 17
3.4
Fatigue Strength, MPa 380 to 520
45
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
120
Tensile Strength: Yield (Proof), MPa 620 to 950
64

Thermal Properties

Latent Heat of Fusion, J/g 280
570
Maximum Temperature: Mechanical, °C 870
160
Melting Completion (Liquidus), °C 1440
580
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.8
2.5
Embodied Carbon, kg CO2/kg material 2.6
7.7
Embodied Energy, MJ/kg 36
140
Embodied Water, L/kg 130
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
3.5
Resilience: Unit (Modulus of Resilience), kJ/m3 960 to 2270
28
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
55
Strength to Weight: Axial, points 31 to 39
13
Strength to Weight: Bending, points 26 to 30
21
Thermal Diffusivity, mm2/s 4.4
59
Thermal Shock Resistance, points 31 to 39
5.6

Alloy Composition

Aluminum (Al), % 0
85.3 to 89
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 74.4 to 80.5
0 to 0.8
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 4.0 to 5.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
11 to 13
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15