MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. 7003 Aluminum

EN 1.4421 stainless steel belongs to the iron alloys classification, while 7003 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is 7003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 11 to 17
11
Fatigue Strength, MPa 380 to 520
130 to 150
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
350 to 390
Tensile Strength: Yield (Proof), MPa 620 to 950
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 870
200
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 16
150
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.6
8.1
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 130
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
37 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 960 to 2270
630 to 710
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 31 to 39
33 to 37
Strength to Weight: Bending, points 26 to 30
37 to 40
Thermal Diffusivity, mm2/s 4.4
59
Thermal Shock Resistance, points 31 to 39
15 to 17

Alloy Composition

Aluminum (Al), % 0
90.6 to 94.5
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15.5 to 17.5
0 to 0.2
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 74.4 to 80.5
0 to 0.35
Magnesium (Mg), % 0
0.5 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.3
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 4.0 to 5.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0 to 0.3
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
5.0 to 6.5
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants