MakeItFrom.com
Menu (ESC)

EN 1.4436 Stainless Steel vs. N06975 Nickel

EN 1.4436 stainless steel belongs to the iron alloys classification, while N06975 nickel belongs to the nickel alloys. They have 50% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4436 stainless steel and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 42
45
Fatigue Strength, MPa 220
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
80
Shear Strength, MPa 430
470
Tensile Strength: Ultimate (UTS), MPa 620
660
Tensile Strength: Yield (Proof), MPa 240
250

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 960
1000
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 16
13

Otherwise Unclassified Properties

Base Metal Price, % relative 19
50
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.9
8.9
Embodied Energy, MJ/kg 54
120
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
240
Resilience: Unit (Modulus of Resilience), kJ/m3 150
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 20
20
Thermal Shock Resistance, points 14
18

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
23 to 26
Copper (Cu), % 0
0.7 to 1.2
Iron (Fe), % 62.3 to 70.5
10.2 to 23.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.0
5.0 to 7.0
Nickel (Ni), % 10.5 to 13
47 to 52
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.7 to 1.5