MakeItFrom.com
Menu (ESC)

EN 1.4462 Stainless Steel vs. EN 1.4988 Stainless Steel

Both EN 1.4462 stainless steel and EN 1.4988 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4462 stainless steel and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 26
34
Fatigue Strength, MPa 370
230
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 500
430
Tensile Strength: Ultimate (UTS), MPa 780
640
Tensile Strength: Yield (Proof), MPa 520
290

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 430
520
Maximum Temperature: Mechanical, °C 1060
920
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 17
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.6
6.0
Embodied Energy, MJ/kg 49
89
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 34
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
180
Resilience: Unit (Modulus of Resilience), kJ/m3 670
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
23
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 21
14

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 21 to 23
15.5 to 17.5
Iron (Fe), % 63.7 to 71.9
62.1 to 69.5
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.5 to 3.5
1.1 to 1.5
Nickel (Ni), % 4.5 to 6.5
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0.1 to 0.22
0.060 to 0.14
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0
0.6 to 0.85