MakeItFrom.com
Menu (ESC)

EN 1.4462 Stainless Steel vs. C12600 Copper

EN 1.4462 stainless steel belongs to the iron alloys classification, while C12600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4462 stainless steel and the bottom bar is C12600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 26
56
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
56
Shear Strength, MPa 500
190
Tensile Strength: Ultimate (UTS), MPa 780
270
Tensile Strength: Yield (Proof), MPa 520
69

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1060
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 17
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 670
21
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28
8.2
Strength to Weight: Bending, points 24
10
Thermal Diffusivity, mm2/s 4.0
39
Thermal Shock Resistance, points 21
9.5

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21 to 23
0
Copper (Cu), % 0
99.5 to 99.8
Iron (Fe), % 63.7 to 71.9
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0
Nitrogen (N), % 0.1 to 0.22
0
Phosphorus (P), % 0 to 0.035
0.2 to 0.4
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0