MakeItFrom.com
Menu (ESC)

EN 1.4501 Stainless Steel vs. C93600 Bronze

EN 1.4501 stainless steel belongs to the iron alloys classification, while C93600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4501 stainless steel and the bottom bar is C93600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
99
Elongation at Break, % 27
14
Poisson's Ratio 0.27
0.35
Shear Modulus, GPa 80
36
Tensile Strength: Ultimate (UTS), MPa 830
260
Tensile Strength: Yield (Proof), MPa 600
140

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
150
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
350
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 22
31
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 4.1
3.2
Embodied Energy, MJ/kg 57
51
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
31
Resilience: Unit (Modulus of Resilience), kJ/m3 870
98
Stiffness to Weight: Axial, points 14
6.1
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 29
7.9
Strength to Weight: Bending, points 25
9.9
Thermal Diffusivity, mm2/s 4.0
16
Thermal Shock Resistance, points 22
9.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.55
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 1.0
79 to 83
Iron (Fe), % 57.6 to 65.8
0 to 0.2
Lead (Pb), % 0
11 to 13
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 1.0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Tungsten (W), % 0.5 to 1.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.7