MakeItFrom.com
Menu (ESC)

EN 1.4518 Stainless Steel vs. C53800 Bronze

EN 1.4518 stainless steel belongs to the iron alloys classification, while C53800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4518 stainless steel and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.3
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 490
830
Tensile Strength: Yield (Proof), MPa 210
660

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1400
800
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 15
61
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
37
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.0
3.9
Embodied Energy, MJ/kg 55
64
Embodied Water, L/kg 160
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
18
Resilience: Unit (Modulus of Resilience), kJ/m3 100
2020
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
26
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 4.1
19
Thermal Shock Resistance, points 14
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
85.1 to 86.5
Iron (Fe), % 61.4 to 70
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.5
0 to 0.060
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 9.0 to 12
0 to 0.030
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2