MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. EN 1.4903 Stainless Steel

Both EN 1.4542 stainless steel and EN 1.4903 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is EN 1.4903 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.7 to 20
20 to 21
Fatigue Strength, MPa 370 to 640
320 to 330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Shear Strength, MPa 550 to 860
420
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
670 to 680
Tensile Strength: Yield (Proof), MPa 580 to 1300
500

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 440
380
Maximum Temperature: Mechanical, °C 860
650
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
4.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
36
Embodied Water, L/kg 130
88

Common Calculations

PREN (Pitting Resistance) 17
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 52
24
Strength to Weight: Bending, points 26 to 37
22
Thermal Diffusivity, mm2/s 4.3
7.0
Thermal Shock Resistance, points 29 to 49
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.070
0.080 to 0.12
Chromium (Cr), % 15 to 17
8.0 to 9.5
Copper (Cu), % 3.0 to 5.0
0 to 0.3
Iron (Fe), % 69.6 to 79
87.1 to 90.5
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.6
0.85 to 1.1
Nickel (Ni), % 3.0 to 5.0
0 to 0.4
Niobium (Nb), % 0 to 0.45
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0
0.18 to 0.25