MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. CC483K Bronze

EN 1.4542 stainless steel belongs to the iron alloys classification, while CC483K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 20
6.4
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
310
Tensile Strength: Yield (Proof), MPa 580 to 1300
170

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1430
990
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 16
68
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 39
62
Embodied Water, L/kg 130
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
17
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
130
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 31 to 52
9.9
Strength to Weight: Bending, points 26 to 37
12
Thermal Diffusivity, mm2/s 4.3
21
Thermal Shock Resistance, points 29 to 49
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
85 to 89
Iron (Fe), % 69.6 to 79
0 to 0.2
Lead (Pb), % 0
0 to 0.7
Manganese (Mn), % 0 to 1.5
0 to 0.2
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0 to 2.0
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.6
Silicon (Si), % 0 to 0.7
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
10.5 to 13
Zinc (Zn), % 0
0 to 0.5