MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. C94100 Bronze

EN 1.4542 stainless steel belongs to the iron alloys classification, while C94100 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is C94100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
92
Elongation at Break, % 5.7 to 20
7.8
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 76
34
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
190
Tensile Strength: Yield (Proof), MPa 580 to 1300
130

Thermal Properties

Latent Heat of Fusion, J/g 280
160
Maximum Temperature: Mechanical, °C 860
130
Melting Completion (Liquidus), °C 1430
870
Melting Onset (Solidus), °C 1380
790
Specific Heat Capacity, J/kg-K 470
330
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
9.2
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 39
48
Embodied Water, L/kg 130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
14
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
97
Stiffness to Weight: Axial, points 14
5.5
Stiffness to Weight: Bending, points 25
16
Strength to Weight: Axial, points 31 to 52
5.8
Strength to Weight: Bending, points 26 to 37
8.1
Thermal Shock Resistance, points 29 to 49
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
72 to 79
Iron (Fe), % 69.6 to 79
0 to 0.25
Lead (Pb), % 0
18 to 22
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0 to 1.0
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.7
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
4.5 to 6.5
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 1.3