MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. C95820 Bronze

EN 1.4542 stainless steel belongs to the iron alloys classification, while C95820 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.7 to 20
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
730
Tensile Strength: Yield (Proof), MPa 580 to 1300
310

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 860
230
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 16
38
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 39
56
Embodied Water, L/kg 130
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
86
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
400
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 52
24
Strength to Weight: Bending, points 26 to 37
22
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 29 to 49
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
9.0 to 10
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
77.5 to 82.5
Iron (Fe), % 69.6 to 79
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
4.5 to 5.8
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8