MakeItFrom.com
Menu (ESC)

EN 1.4558 Stainless Steel vs. CC140C Copper

EN 1.4558 stainless steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4558 stainless steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 510
340
Tensile Strength: Yield (Proof), MPa 200
230

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1400
1100
Melting Onset (Solidus), °C 1350
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
310
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
77
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
78

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.5
2.6
Embodied Energy, MJ/kg 77
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
34
Resilience: Unit (Modulus of Resilience), kJ/m3 100
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
10
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 3.1
89
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 0.15 to 0.45
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 23
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 39.2 to 47.9
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 32 to 35
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.6
0