MakeItFrom.com
Menu (ESC)

EN 1.4558 Stainless Steel vs. S30600 Stainless Steel

Both EN 1.4558 stainless steel and S30600 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4558 stainless steel and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
45
Fatigue Strength, MPa 170
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 350
430
Tensile Strength: Ultimate (UTS), MPa 510
610
Tensile Strength: Yield (Proof), MPa 200
270

Thermal Properties

Latent Heat of Fusion, J/g 300
350
Maximum Temperature: Corrosion, °C 480
410
Maximum Temperature: Mechanical, °C 1100
950
Melting Completion (Liquidus), °C 1400
1380
Melting Onset (Solidus), °C 1350
1330
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
19
Density, g/cm3 8.0
7.6
Embodied Carbon, kg CO2/kg material 5.5
3.6
Embodied Energy, MJ/kg 77
51
Embodied Water, L/kg 200
150

Common Calculations

PREN (Pitting Resistance) 22
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
220
Resilience: Unit (Modulus of Resilience), kJ/m3 100
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 3.1
3.7
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0.15 to 0.45
0
Carbon (C), % 0 to 0.030
0 to 0.018
Chromium (Cr), % 20 to 23
17 to 18.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 39.2 to 47.9
58.9 to 65.3
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 32 to 35
14 to 15.5
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.7
3.7 to 4.3
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.6
0