MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C86300 Bronze

EN 1.4568 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
850
Tensile Strength: Yield (Proof), MPa 330 to 1490
480

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 890
160
Melting Completion (Liquidus), °C 1420
920
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 16
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 40
51
Embodied Water, L/kg 140
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 30 to 58
30
Strength to Weight: Bending, points 25 to 40
25
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 23 to 46
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.7 to 1.5
5.0 to 7.5
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 70.9 to 76.8
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Nickel (Ni), % 6.5 to 7.8
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0