MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. S32101 Stainless Steel

Both EN 1.4568 stainless steel and S32101 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is S32101 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 2.3 to 21
34
Fatigue Strength, MPa 220 to 670
400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 520 to 930
490
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
740
Tensile Strength: Yield (Proof), MPa 330 to 1490
500

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
430
Maximum Temperature: Mechanical, °C 890
1000
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
38
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 17
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
230
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30 to 58
27
Strength to Weight: Bending, points 25 to 40
24
Thermal Diffusivity, mm2/s 4.3
4.0
Thermal Shock Resistance, points 23 to 46
20

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Carbon (C), % 0 to 0.090
0 to 0.040
Chromium (Cr), % 16 to 18
21 to 22
Copper (Cu), % 0
0.1 to 0.8
Iron (Fe), % 70.9 to 76.8
67.3 to 73.3
Manganese (Mn), % 0 to 1.0
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.8
Nickel (Ni), % 6.5 to 7.8
1.4 to 1.7
Nitrogen (N), % 0
0.2 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030