MakeItFrom.com
Menu (ESC)

EN 1.4600 Stainless Steel vs. S32654 Stainless Steel

Both EN 1.4600 stainless steel and S32654 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 56% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4600 stainless steel and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
45
Fatigue Strength, MPa 290
450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
82
Shear Strength, MPa 360
590
Tensile Strength: Ultimate (UTS), MPa 580
850
Tensile Strength: Yield (Proof), MPa 430
490

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Corrosion, °C 420
440
Maximum Temperature: Mechanical, °C 730
1100
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 27
11
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
34
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.0
6.4
Embodied Energy, MJ/kg 28
87
Embodied Water, L/kg 100
220

Common Calculations

PREN (Pitting Resistance) 12
57
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
330
Resilience: Unit (Modulus of Resilience), kJ/m3 470
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 7.3
2.9
Thermal Shock Resistance, points 21
19

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.020
Chromium (Cr), % 11 to 13
24 to 25
Copper (Cu), % 0
0.3 to 0.6
Iron (Fe), % 82 to 87.7
38.3 to 45.3
Manganese (Mn), % 1.0 to 2.5
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0.3 to 1.0
21 to 23
Nitrogen (N), % 0 to 0.025
0.45 to 0.55
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.0050
Titanium (Ti), % 0 to 0.35
0