MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. EN 1.4035 Stainless Steel

Both EN 1.4606 stainless steel and EN 1.4035 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is EN 1.4035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23 to 39
18
Fatigue Strength, MPa 240 to 420
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 410 to 640
430
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
690
Tensile Strength: Yield (Proof), MPa 280 to 630
400

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 770
380
Maximum Temperature: Mechanical, °C 910
760
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
29
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
7.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.0
2.0
Embodied Energy, MJ/kg 87
27
Embodied Water, L/kg 170
100

Common Calculations

PREN (Pitting Resistance) 19
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 1010
420
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 36
25
Strength to Weight: Bending, points 20 to 28
22
Thermal Diffusivity, mm2/s 3.7
7.8
Thermal Shock Resistance, points 21 to 35
25

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0.43 to 0.5
Chromium (Cr), % 13 to 16
12.5 to 14
Iron (Fe), % 49.2 to 59
82.1 to 86.9
Manganese (Mn), % 1.0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0.15 to 0.35
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0