MakeItFrom.com
Menu (ESC)

EN 1.4612 Stainless Steel vs. C22000 Bronze

EN 1.4612 stainless steel belongs to the iron alloys classification, while C22000 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is EN 1.4612 stainless steel and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
1.9 to 45
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 1010 to 1110
200 to 300
Tensile Strength: Ultimate (UTS), MPa 1690 to 1850
260 to 520
Tensile Strength: Yield (Proof), MPa 1570 to 1730
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 790
180
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 480
390
Thermal Expansion, µm/m-K 11
18

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 50
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 210
3.7 to 230
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 60 to 65
8.1 to 17
Strength to Weight: Bending, points 40 to 43
10 to 17
Thermal Shock Resistance, points 58 to 63
8.8 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.4 to 1.8
0
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
89 to 91
Iron (Fe), % 71.5 to 75.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 1.8 to 2.3
0
Nickel (Ni), % 10.2 to 11.3
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0.2 to 0.5
0
Zinc (Zn), % 0
8.7 to 11
Residuals, % 0
0 to 0.2

Comparable Variants