MakeItFrom.com
Menu (ESC)

EN 1.4634 Stainless Steel vs. EN 1.1191 Steel

Both EN 1.4634 stainless steel and EN 1.1191 steel are iron alloys. They have 80% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4634 stainless steel and the bottom bar is EN 1.1191 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
16 to 17
Fatigue Strength, MPa 180
210 to 290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 340
380 to 430
Tensile Strength: Ultimate (UTS), MPa 540
630 to 700
Tensile Strength: Yield (Proof), MPa 280
310 to 440

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 900
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
48
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 42
19
Embodied Water, L/kg 140
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 200
260 to 510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
22 to 25
Strength to Weight: Bending, points 19
21 to 22
Thermal Diffusivity, mm2/s 5.8
13
Thermal Shock Resistance, points 19
20 to 22

Alloy Composition

Aluminum (Al), % 0.2 to 1.5
0
Carbon (C), % 0 to 0.030
0.42 to 0.5
Chromium (Cr), % 17.5 to 18.5
0 to 0.4
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 74.9 to 81.8
97.3 to 99.08
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0.3 to 1.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0.2 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.035