MakeItFrom.com
Menu (ESC)

EN 1.4826 Stainless Steel vs. C32000 Brass

EN 1.4826 stainless steel belongs to the iron alloys classification, while C32000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4826 stainless steel and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.1
6.8 to 29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 500
270 to 470
Tensile Strength: Yield (Proof), MPa 260
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 950
170
Melting Completion (Liquidus), °C 1400
1020
Melting Onset (Solidus), °C 1360
990
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
37

Otherwise Unclassified Properties

Base Metal Price, % relative 17
28
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 3.3
2.6
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 170
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
8.8 to 15
Strength to Weight: Bending, points 18
11 to 16
Thermal Diffusivity, mm2/s 3.7
47
Thermal Shock Resistance, points 11
9.5 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 21 to 23
0
Copper (Cu), % 0
83.5 to 86.5
Iron (Fe), % 60.4 to 68.7
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 11
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4