MakeItFrom.com
Menu (ESC)

EN 1.4854 Stainless Steel vs. EN AC-46400 Aluminum

EN 1.4854 stainless steel belongs to the iron alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4854 stainless steel and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
77 to 120
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 45
1.1 to 1.7
Fatigue Strength, MPa 310
75 to 85
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 750
170 to 310
Tensile Strength: Yield (Proof), MPa 340
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
520
Maximum Temperature: Mechanical, °C 1170
170
Melting Completion (Liquidus), °C 1370
610
Melting Onset (Solidus), °C 1330
570
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 5.7
7.8
Embodied Energy, MJ/kg 81
150
Embodied Water, L/kg 220
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 280
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 26
18 to 32
Strength to Weight: Bending, points 23
26 to 38
Thermal Diffusivity, mm2/s 2.9
55
Thermal Shock Resistance, points 18
7.8 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
85.4 to 90.5
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0.8 to 1.3
Iron (Fe), % 33.6 to 40.6
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 2.0
0.15 to 0.55
Nickel (Ni), % 34 to 36
0 to 0.2
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.2 to 2.0
8.3 to 9.7
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.25