MakeItFrom.com
Menu (ESC)

EN 1.4854 Stainless Steel vs. S32750 Stainless Steel

Both EN 1.4854 stainless steel and S32750 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4854 stainless steel and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 45
17
Fatigue Strength, MPa 310
360
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 520
530
Tensile Strength: Ultimate (UTS), MPa 750
860
Tensile Strength: Yield (Proof), MPa 340
590

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Corrosion, °C 450
450
Maximum Temperature: Mechanical, °C 1170
1100
Melting Completion (Liquidus), °C 1370
1450
Melting Onset (Solidus), °C 1330
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
21
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.7
4.1
Embodied Energy, MJ/kg 81
56
Embodied Water, L/kg 220
180

Common Calculations

PREN (Pitting Resistance) 28
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
130
Resilience: Unit (Modulus of Resilience), kJ/m3 280
860
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
31
Strength to Weight: Bending, points 23
26
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 18
25

Alloy Composition

Carbon (C), % 0.040 to 0.080
0 to 0.030
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 24 to 26
24 to 26
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 33.6 to 40.6
58.1 to 66.8
Manganese (Mn), % 0 to 2.0
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 34 to 36
6.0 to 8.0
Nitrogen (N), % 0.12 to 0.2
0.24 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 1.2 to 2.0
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.020