MakeItFrom.com
Menu (ESC)

EN 1.4854 Stainless Steel vs. S44635 Stainless Steel

Both EN 1.4854 stainless steel and S44635 stainless steel are iron alloys. They have 67% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4854 stainless steel and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
240
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 45
23
Fatigue Strength, MPa 310
390
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 520
450
Tensile Strength: Ultimate (UTS), MPa 750
710
Tensile Strength: Yield (Proof), MPa 340
580

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Corrosion, °C 450
610
Maximum Temperature: Mechanical, °C 1170
1100
Melting Completion (Liquidus), °C 1370
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 11
16
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
22
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.7
4.4
Embodied Energy, MJ/kg 81
62
Embodied Water, L/kg 220
170

Common Calculations

PREN (Pitting Resistance) 28
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
150
Resilience: Unit (Modulus of Resilience), kJ/m3 280
810
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 2.9
4.4
Thermal Shock Resistance, points 18
23

Alloy Composition

Carbon (C), % 0.040 to 0.080
0 to 0.025
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 24 to 26
24.5 to 26
Iron (Fe), % 33.6 to 40.6
61.5 to 68.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 34 to 36
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0.12 to 0.2
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 1.2 to 2.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8