MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. C92900 Bronze

EN 1.4872 stainless steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 950
350
Tensile Strength: Yield (Proof), MPa 560
190

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1390
1030
Melting Onset (Solidus), °C 1340
860
Specific Heat Capacity, J/kg-K 490
370
Thermal Conductivity, W/m-K 15
58
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
35
Density, g/cm3 7.6
8.8
Embodied Carbon, kg CO2/kg material 3.3
3.8
Embodied Energy, MJ/kg 47
61
Embodied Water, L/kg 180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
27
Resilience: Unit (Modulus of Resilience), kJ/m3 780
170
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 35
11
Strength to Weight: Bending, points 28
13
Thermal Diffusivity, mm2/s 3.9
18
Thermal Shock Resistance, points 21
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
82 to 86
Iron (Fe), % 54.2 to 61.6
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 6.0 to 8.0
2.8 to 4.0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7