MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. AWS ER120S-1

Both EN 1.4874 stainless steel and AWS ER120S-1 are iron alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 6.7
17
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 480
930
Tensile Strength: Yield (Proof), MPa 360
830

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 13
46
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 70
4.2
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.9
Embodied Energy, MJ/kg 110
25
Embodied Water, L/kg 290
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
150
Resilience: Unit (Modulus of Resilience), kJ/m3 310
1850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16
33
Strength to Weight: Bending, points 16
27
Thermal Diffusivity, mm2/s 3.3
13
Thermal Shock Resistance, points 11
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.35 to 0.65
0 to 0.1
Chromium (Cr), % 19 to 22
0 to 0.6
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 23 to 38.9
92.4 to 96.1
Manganese (Mn), % 0 to 2.0
1.4 to 1.8
Molybdenum (Mo), % 2.5 to 3.0
0.3 to 0.65
Nickel (Ni), % 18 to 22
2.0 to 2.8
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 2.0 to 3.0
0
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5